

LFA1 antagonist | BI-1950

Table of contents

Summary	2
Chemical Structure	2
Highlights	2
Target information	3
In vitro activity	3
In vitro DMPK and CMC parameters	4
<i>In vivo</i> DMPK parameters	4
<i>In vivo</i> pharmacology	5
Selectivity	5
Negative control	5
Co-crystal structure of the BI probe compound and the target protein	6
Reference molecule(s)	6
Summary	6
Supplementary data	6
References	6

Summary

BI-1950 is a highly potent inhibitor of LFA-1 and an excellent molecule for testing biological hypotheses *in vitro* and *in vivo*.

Chemical Structure

Figure 1: 2-D structure of BI-1950, a LFA1 antagonist

Figure 2: 3-D conformation of BI-1950

Highlights

BI-1950 potently inhibits the binding of LFA-1 to ICAM-1 (intercellular adhesion molecule 1) with a $\rm K_D$ value of 9 nM and the production of IL-2 in human PBMC and whole blood with an IC₅₀ value of

3 nM and 120 nM, respectively. BI-1950 shows >1000 fold selectivity against the most closely related β 2-integrin Mac-1 and β 1-integrin function and has an attractive DMPK profile, making it a excellent molecule for testing pharmacological hypotheses *in vitro* and *in vivo*.

Target information

The integrin LFA-1 (lymphocyte function-associated antigen-1) is a receptor present on lymphocytes that plays, together with its major ligand ICAM-1 (intercellular adhesion molecule 1), an important role in immune cell function. [1] [3] [4]

Figure 3: X-Ray structure of LFA-1 with an analogue of BI-1950 (solved at Boehringer Ingelheim)

In vitro activity

BI-1950 potently inhibits the binding of LFA-1 to ICAM-1 with a K_D value of 9 nM.

PROBE NAME / NEGATIVE CONTROL	BI-1950	BI-9446
MW [Da]	646.5	602.5
Inhibition of LFA-1 binding to ICAM-1 K_D [nM] ^a	9	>1,000
Inhibition of SEB-induced production of IL-2 in human PBMC IC_{50} [nM] ^b	3	>1,000
Inhibition of SEB-induced production of IL-2 in human whole blood IC_{50} [nM] ^b	120	n.d.

^aBinding assay; ^bSEB: staphylococcal enterotoxin B.

In vitro DMPK and CMC parameters

PROBE NAME	BI-1950	BI-9446
Solubility @ pH 6.8 [µg/ml]	0.9	0.1
CACO permeability @ pH 7.4 [*10 ⁻⁶ cm/s]	13	n.d.
CACO efflux ratio	2	n.d.
Stability in liver microsomes (human/	13/12/6	n.d.
mouse/rat) [% Q _H] Plasma protein binding (human/mouse/dog)	99.6 / 99.7 / 99.9	n.d.

In vivo DMPK parameters

PROBE NAME	BI-1950	
Species	mouse	rat
CL (<i>iv</i>) [% Q _H]	8	11
V _{ss} [I/kg]	3.3	2.7
MRT [h]	7.2	6.5
F[%]	154	21

In vivo pharmacology

BI-1950 shows an attractive DMPK profile and was tested in a proof-of-concept model *in vivo*. As BI-1950 demonstrates greater than 250-fold selectivity for human over mouse LFA-1 as assessed in paired assays that measure the inhibition of IL-2 production in SEB-stimulated human PBMC and mouse splenocytes (SEB: staphylococcal enterotoxin B), a *trans vivo* model for delayed type hypersensitivity (DTH) in SCID mice was used. [5] After injection of human PBMCs into the footpad of SCID mice and stimulation with a specific antigen (tetanus toxoid, TT), the DTH response is quantified by measuring the footpad swelling. BI-1950 inhibited swelling in a dose dependent manner and showed full efficacy at a dose of 3 mg/kg PO.

Selectivity

In an external selectivity screen at Eurfins (Panlabs) BI-1950 hit 4/47 targets >50 % Inhibition @ 10 μ M. See supplementary information for details.

BI-1950	SELECTIVITY DATA AVAILABLE
Cerep°	No
Eurofins-Panlabs [®]	Yes
Invitrogen°	No
DiscoverX°	No
Dundee	No

Negative control

The close analog BI-9446 can be used as negative control for *in vitro* studies with much weaker affinity to LFA-1 (> 1μ M).

Figure 4: Chemical structure of the negative control BI-9446

Co-crystal structure of the BI probe compound and the target protein

No Xray structure is available for BI-1950 but for the structurally related compound (**17d** in *J. Med. Chem.* **2004**, 47, 5356).^[2]

Summary

BI-1950 potently inhibits the binding of LFA-1 to ICAM-1 with a K_D value of 9 nM and the production of IL-2 in human PBMC and whole blood with an IC50 value of 3 nM and 120 nM, respectively. BI-1950 is highly selective against related integrins and has an attractive DMPK profile. Providing this compound together with a negative probe should stimulate and support further research in this field.

Supplementary data

Selectivity data can be downloaded free of charge from this site.

References

[1] T. A. Kelly et al; Cutting Edge: A Small Molecule Antagonist of LFA-1-Mediated Cell Adhesion; J. Immunol. **1999**, *163*, 5173; http://www.jimmunol.org/content/163/10/5173, PubMed.

- [2] J.-P. Wu et al; Second-Generation Lymphocyte Function Associated Antigen-1 Inhibitors: 1*H*-Imidazo[1,2-α]imidazol-2-one Derivatives; *J. Med. Chem.* **2004**, 47, 5356; https://doi.org/10.1021/jm049657b, PubMed.
- [3] R. J. Winquist et al; The role of leukocyte function-associated antigen-1 in animal models of inflammation; *Eur. J. Pharmacol.* **2001**, *429*, 297; https://doi.org/10.1016/S0014-2999(01)01328-0, PubMed.
- [4] M. J. Panzerbeck et al; An orally active, primate selective antagonist of LFA-1 inhibits delayed-type hypersensitivity in a humanized-mouse model; *Eur. J. Pharmacol.* **2006**, *534*, 233; https://doi.org/10.1016/j.ejphar.2006.01.004, PubMed.
- [5] L. Carrodeguas, C. G. Orosz, W. J. Waldmann, D. D. Sedmak, P. W. Adams, A. M. VanBuskirk; Trans vivo Analysis of Human Delayed-Type Hypersensitivity Reactivity; *Human Immunology* **1999**, *60*, 641-651; https://doi.org/10.1016/S0198-8859(99)00002-6, PubMed.
- [6] R. P. Frutos, M. Johnson; Regiocontrolled synthesis of highly-functionalized fused imidazoles: a novel synthesis of second generation LFA-1 inhibitors; Tetrahedron *Lett.* **2003**, 44, 6509; https://doi.org/10.1016/S0040-4039(03)01535-1;
- [7] X. Wang et al, Efficient Synthesis of a Small Molecule, Nonpeptide Inhibitor of LFA-1, *Org. Lett.* **2010**, *12*, 4412; https://doi.org/10.1021/ol101960x, PubMed.
- [8] X. Wang et al, Asymmetric Synthesis of LFA-1 Inhibitor BIRT2584 on Metric Ton Scale; *Org. Process Res. Dev.* **2011**, *15*, 1185; https://doi.org/10.1021/op200175t.

LFA1 antagonist / BI-1950