Table of contents

Summary 2
Chemical Structure 2
Highlights 2
Target information 3
In vitro activity 4
In vitro DMPK and CMC parameters 5
In vivo DMPK parameters 5
Selectivity 5
In vivo pharmacology 6
Negative control 6
Reference molecule(s) 7
Summary 7
Supplementary data 7
References 7
Summary

BI 653048 is a “dissociated” GR agonist (displaying different transcriptional regulatory profiles between gene transrepression and transactivation).

Chemical Structure

![2D structure of BI 653048](image)

![3D structure of BI 653048](image)

Figure 1: 2-D structure of BI 653048, a Glucocorticoid Receptor Agonist

Figure 2: 3-D structure of BI 653048

Highlights

BI 653048 is a “dissociated” GR agonist (displaying different transcriptional regulatory profiles between gene transrepression and transactivation) with selectivity against other nuclear receptors (MR, PR) and improved drug-like properties like reduced CYP-inhibition across isoforms and reduced affinity for the hERG ion channel. For unknown reasons, the compound shows species selectivity with reduced mouse functional transrepression potency and is not suitable for evaluation in standard preclinical in vivo mouse models.
Target information

Cortisol and the related cortisone and corticosterone are steroid hormones that are referred to as glucocorticoids (GCs) and bind to the glucocorticoid receptor (GR), which belongs to a large family of transcription factors, the superfamily of nuclear hormone receptors. GCs play an important role in the regulation of the immune system and therefore are widely used in the treatment of inflammatory and immune diseases such as rheumatoid arthritis, asthma, allergy, and sepsis.

Synthetic GCs, which differ from cortisol in their pharmacokinetics and pharmacodynamics, have been created with dexamethasone and prednisolone being among the most extensively used anti-inflammatory agents. However, because of harmful dose-limiting side effects and the occurrence of glucocorticoid resistance, the use of these drugs is limited. Side effects include weight gain, hypertension, muscle weakness, skin thinning, diabetes, and the most troublesome GC-induced osteoporosis leading to a weakening of the trabecular bone, which causes a significant increase in the risk of spine, hip, and rib fracture. Upon binding of GCs to GR, a conformational change is provoked leading to the release of GR from the chaperone complexes and unmasking of nuclear localization signals followed by translocation of the GR–ligand complex to the nucleus. There, it is thought to directly and indirectly induce the expression of a few hundred genes, which is largely cell-type specific. The precise molecular mechanism is highly complex and, despite an impressive amount of research, still only partially understood. However, a simplistic hypothesis, which is based on a series of experiments, has become broadly accepted among researchers aiming at GCs with reduced side effects. This hypothesis attributes the anti-inflammatory effects of GCs to the inhibition of gene transcription, referred to as transrepression, while making the activation of transcription, called transactivation, responsible for the majority of side effects. Mechanistically it was rationalized that transrepression involves the GR–ligand complex indirectly in the transcription process through its interaction in a monomeric form with transcription factors such as NF-κB and AP-1 resulting in the down-regulation of key cytokine inflammatory mediators such as TNF-α, IL-1, IL-2, and IL-6. The transactivation pathway directly involves homodimers of GR recognizing GR response elements (GREs) on the DNA resulting in the transcription of genes. While this hypothesis is experimentally poorly supported and partially even contradicted, it served as an appealing working model for drug discovery programs over the past decade. Several companies have invested intense research in the quest of identifying functionally selective, so-called “dissociated” synthetic glucocorticoids with the goal of offering a therapeutic advantage over currently marketed GCs.
Glucocorticoid Receptor Agonist | BI 653048

Figure 3: Human glucocorticoid receptor with bound agonist (PDB code: 3k23)

In vitro activity

<table>
<thead>
<tr>
<th>PROBE NAME / NEGATIVE CONTROL</th>
<th>BI 653048</th>
<th>BI-3047</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW [Da]</td>
<td>515.52</td>
<td>515.52</td>
</tr>
<tr>
<td>GR (IC$_{50}$) [nM]a</td>
<td>55</td>
<td>>2,000</td>
</tr>
<tr>
<td>IL-6 (IC$_{50}$) [nM]a</td>
<td>23</td>
<td>n.d.</td>
</tr>
<tr>
<td>IL-6 (IC$_{50}$) max. eff. [%]a,b</td>
<td>88</td>
<td>n.d.</td>
</tr>
<tr>
<td>MMTV max. eff. [%]a,b</td>
<td>33</td>
<td>n.d.</td>
</tr>
<tr>
<td>OC max. eff. [%]a,b</td>
<td>39</td>
<td>n.d.</td>
</tr>
<tr>
<td>hERG (IC$_{50}$)a</td>
<td>>30</td>
<td>n.d.</td>
</tr>
<tr>
<td>CYP 1A2 [µM]</td>
<td>>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>CYP 2D6 [µM]</td>
<td>41</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
CYP 2C9 [µM] | 12 | 4.2
CYP 2C19 [µM] | 9 | 18
CYP 3A4 [µM] | 8 | n.d.

Assay conditions can be downloaded free of charge from pubs.acs.org. Maximum efficacy at the highest tested concentration compared to dexamethasone, defined at 100%; maximum concentration tested is 2 µM.

In vitro DMPK and CMC parameters

<table>
<thead>
<tr>
<th>PROBE NAME</th>
<th>BI 653048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous solubility @ pH 6.8 [µg/ml]</td>
<td>5</td>
</tr>
<tr>
<td>HLM [% QH]</td>
<td>11</td>
</tr>
<tr>
<td>Plasma protein binding rat [%]</td>
<td>91.8</td>
</tr>
<tr>
<td>Plasma protein binding human [%]</td>
<td>96.1</td>
</tr>
</tbody>
</table>

In vivo DMPK parameters

<table>
<thead>
<tr>
<th>PROBE NAME</th>
<th>BI-653048</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat PK t1/2 [h]</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Selectivity

Screened against related nuclear receptors (PR, MR, ER, AR): >100fold selectivity achieved

A Eurofins-Panlabs panel was performed and did not give strong hits: %CTRL >75% for all 49 targets tested @ 10 µM. The data can be downloaded from this platform.

<table>
<thead>
<tr>
<th>BI 653048</th>
<th>SELECTIVITY DATA AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerep*</td>
<td>No</td>
</tr>
</tbody>
</table>
In vivo pharmacology

Species selectivity of this subseries of compounds precluded a pharmacological evaluation of BI 653048 in standard preclinical in vivo mouse models. Translation of in vitro dissociation markers to preclinical in vivo mouse models had been previously established with tool compounds².

BI 653048 was tested in a 9-day type II collagen-induced arthritis model in rats at 3, 10, and 30 mg/kg qd po in 30% cremophor to guide human efficacious concentration projections. Animals treated with the low dose (3 mg/kg) of BI 653048 had nonsignificant decreases for all measured histology parameters (ankle inflammation, pannus formation, cartilage damage, and bone resorption).¹

Middose (10 mg/kg) animals had significantly decreased pannus and bone resorption (33%) as well as summed scores (27%), while all parameters were significantly decreased (87−96%) in the high dose (30 mg/kg) group. The ED₅₀ value for the summed scores was 14 mg/kg. No side effect related parameters were feasible to be evaluated in this shorter duration model ¹.

Negative control

BI-3047 shows no activity on GR (CR IC₅₀ > 2 µM)
Figure 4: Chemical structure of the negative control BI-3047

Reference molecule(s)

See reference 3

Summary

BI 653048 is a “dissociated” GR agonist (displaying different transcriptional regulatory profiles between gene transrepression and transactivation) with selectivity for other nuclear receptors (MR, PR) and good drug-like properties. The compound is not suited for in vivo mouse models due to species selectivity.

Supplementary data

Selectivity data can be downloaded free of charge from this site.

References

