

BCL6 inhibitor | BI-3812

Table of contents

Summary	2
Chemical Structure	2
Highlights	3
Target information	3
In vitro activity	4
In vitro DMPK and CMC parameters	4
Negative control	5
Selectivity	5
Co-crystal structure of the BI probe compound and the target protein.	5
Reference molecule(s)	6
Summary	6
References	6

BCL 6 inhibitor | BI-3812

Summary

BI-3812 is a single digit nanomolar BCL6::Co-repressor inhibitor which also inhibits the BCL6::Co-repressor complex formation in cells.

Chemical Structure

Figure 1: 2-D structure of BI-3812, a BCL6 inhibitor

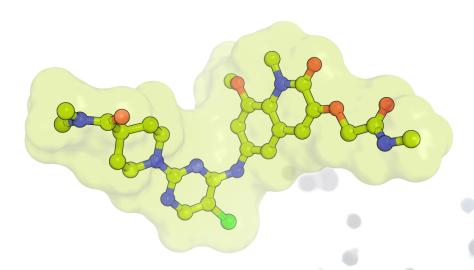


Figure 2: BI-3812, 3D conformation, based on X-ray structure with BI-3802

Highlights

B-cell lymphoma 6 (BCL6) is a known oncogenic driver and frequently overexpressed in many DLBCL. BI-3812 potently inhibits the interaction of the BTB/POZ domain of BCL6 with several corepressors *in vitro* (IC $_{50} \le 3$ nM). In a cellular context, BI-3812 inhibits the BCL6::Co-repressor complex formation with an IC $_{50}$ of 40 nM $_1$. The high potency and good permeability properties of BI-3812 make this molecule a very good cellular probe compound for testing hypotheses around BCL6 biology. With BI-5273 we also offer a structurally close analog which can be used as a negative control for *in vitro* experiments (IC $_{50} \sim 10 \, \mu M$).

Target information

B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor that binds specific DNA sequences *via* its Zn-fingers and recruits transcriptional co-repressors (e.g. BCOR, SMRT, NCOR) by its BTB/POZ domain.² BCL6 is essential for the germinal center (GC) reaction.³ It represses a broad set of genes that are required to sustain mutagenic activity without activating the DNA damage response or apoptosis.⁴ BCL6 also prevents maturation to plasma or memory cells and helps to maintain a de-differentiated state. Its expression must be switched off to allow the B-cell to exit the GC cycle and differentiate. BCL6 is a known oncogenic driver of DLBCL^{5,6} and frequently overexpressed in DLBCL.

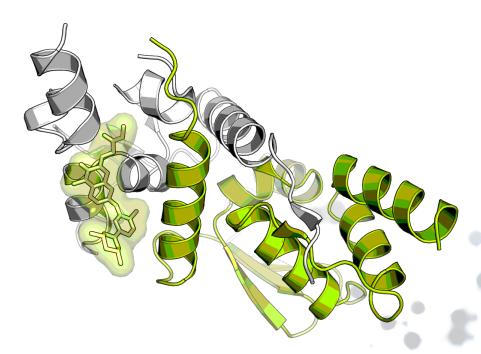


Figure 3: BCL6-BTB dimer with BI-3802, as observed by X-ray. BI-3802, a close analog of BI-3812, binds at the interface of two monomers (monomers are shown in green and grey).

In vitro activity

BI-3812 displays an IC₅₀ \leq 3 nM in a BCL6::BCOR U*Light* TR-FRET assay.

PROBE NAME / NEGATIVE CONTROL	BI-3812	BI-5273
MW [Da]	558	500
BCL6::BCOR ULight TR-FRET (IC50) [nM] ^a	≤3	10,162
BCL6::NCOR LUMIER (IC ₅₀) [nM]	40	n.d.

^a With affinities of approximately 3 nM, the assay wall of this assay is reached, limiting the accuracy of the biochemical assay.

We recommend to store and use 1 mM DMSO stock solutions of BI-3812 for all *in vitro* experiments.

In vitro DMPK and CMC parameters

PROBE NAME / NEGATIVE CONTROL	BI-3812	BI-5273
Aqueous solubility @ pH 6.8 [μg/ml]	<1	84
CACO permeability @ pH 7.4 [*10 ⁻⁶ cm/s]	2.8	22
CACO efflux ratio	14	0.6
Human hepatocyte clearance [% Q _H]	n.d.	n.d.
Plasma protein binding human [%]	96.89	n.d.

Negative control

BI-5273 is a close analog of BI-3812 which binds only very weakly to the BCL6 BTB domain (IC50 \sim 10 μ M).

Figure 4: BI-5273 which serves as a negative control

Selectivity

The intracellular selectivity profile was determined for the close analog BI-3802. For BI-3802 BCL6 was confirmed as the major target of this compound in DLBCL cells.¹

SELECTIVITY DATA AVAILABLE	BI-3812	BI-5273
SafetyScreen44™ with kind of support of curofins	Yes	Yes
Invitrogen®	Yes	No
DiscoverX®	No	No
Dundee	No	No

Co-crystal structure of the BI probe compound and the target protein.

Not available. However, the X-ray structure with the close analog BI-3802 was solved at Boehringer Ingelheim.

Reference molecule(s)

Several small molecule BCL6 inhibitors have been published recently. 7,8,9,10

Summary

BI-3812 is a single digit nanomolar BCL6::Co-repressor inhibitor which also inhibits the BCL6::Co-repressor complex formation in cells (IC50 = 40 nM). BI-3812 is a classical PPI inhibitor probe compound for testing hypotheses around BCL6 biology in vitro.

References

- 1. N. Kerres *et al.* Chemically induced degradation of the oncogenic transcription factor BCL6 *Cell Rep.* **2017**, 20(12), 2860-2875. DOI: 10.1016/j.celrep.2017.08.081, PubMed.
- 2. S. Zollman *et al.* The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila *Proc. Natl. Acad. Sci. U S A 1994*, 91, 10717-10721. PMC, PubMed.
- 3. A.L. Dent *et al.* Control of inflammation, cytokine expression, and germinal center formation by BCL-6, *Science* **1997**, *276*, 589-592. DOI: 10.1126/science.276.5312.589, PubMed.
- 4. K. Basso *et al.*, Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells *Blood* **2010**, *115*, 975-984. DOI: 10.1182/blood-2009-06-227017, PubMed.
- 5. K. Basso and R. Dalla-Favera, Roles of BCL6 in normal and transformed germinal center B cells *Immunol. Rev.* **2012**, *247*, 172-183. DOI: 10.1111/j.1600-065X.2012.01112.x, PubMed.
- 6. K. Hatzi and A. Melnick, Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis *Trends Mol. Med.* **2014**, *20*, 343-352. DOI: 10.1016/j.molmed.2014.03.001, PubMed.
- 7. M. G. Cardenas *et al.* Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma *J. Clin. Invest.* **2016**, *126*, 3351-3362. DOI: 10.1172/JCI85795, PubMed.
- 8. W. McCoull *et al.* Discovery of Pyrazolo[1,5-a]pyrimidine B-Cell Lymphoma 6 (BCL6) Binders and Optimization to High Affinity Macrocyclic Inhibitors, *J. Med. Chem.* **2017**, *60*, 4386-4402. DOI: 10.1021/acs.jmedchem.7b00359, PubMed.

- 9. Y. Kamada *et al.* Discovery of a B-cell lymphoma 6 Protein–Protein Interaction Inhibitor by a Biophysics-driven Fragment-based Approach, *J. Med. Chem.* **2017**, *60*, 4358-4368. DOI: 10.1021/acs.jmedchem.7b00313, PubMed.
- 10. T. Yasui *et al.* Discovery of a novel B-cell lymphoma 6 (BCL6)-corepressor interaction inhibitor by utilizing structure-based drug design, *Bioorg. Med. Chem.* **2017**, *25*, 4876-4886. DOI: 10.1016/j.bmc.2017.07.037, PubMed.