

GPR40 agonist | BI-2081

Table of contents

Summary	2
Chemical Structure	2
Highlights	3
Target information	3
<i>In vitro</i> activity	4
<i>In vitro</i> DMPK and CMC parameters	4
<i>In vivo</i> DMPK parameters	6
<i>In vivo</i> pharmacology	6
Negative control	7
Selectivity	8
Reference molecule(s)	8
Supplementary data	8
References	8

Summary

BI-2081 is a partial GPR40 agonist with a high *in vitro* potency (EC₅₀ = 4 nM) and a good *in vitro* and *in vivo* PK profile.

Chemical Structure

Figure 1: 2-D structure of BI-2081, a potent GPR40 agonist.

Figure 2: BI-2081, 3-D low energy conformation.

Highlights

BI-2081 is a partial agonist GPR40 with a good *in vitro* potency, reducing the plasma glucose concentration in Zucker diabetic fatty (ZDF) rats. It possesses a good *in vitro* and *in vivo* PK profile, which makes an oral application with high bioavailability possible. The structurally related BI-0340 is a suitable negative control due to its significant lower potency on GPR40.

Target information

The GPR40, also known as free fatty acid receptor 1 (FFA1), is a member of the rhodopsin family of G-protein coupled receptors and it interacts predominantly with the $G\alpha_q$ subunit.¹ The receptor is related to other fatty acid receptors (i.e. GPR43/FFA2 and GPR41FFA3) and shares an overall sequence homology of up to 50% with this family.² GPR40 is highly expressed in the β -cells of the pancreas. Additionally, it can be found in the brain and the GI tract.³ The receptor is activated by medium to long chain saturated and unsaturated fatty acids (C_{12} - C_{20}). Activation of GPR40 leads to an increase of intracellular Ca^{2+} concentrations via the IP₃ pathway and stimulates the insulin release in the presence of glucose. The GPR40 agonist should have a low risk of hypoglycemia due to this glucose-stimulated insulin secretion (GSIS).⁴

Figure 3: Structure of GPR40 with an agonist related to BI-2081, as revealed by X-ray crystallography (PDB code 4HPU).

In vitro activity

BI-2081 is a partial agonist on GPR40 and shows a high cellular potency in the human IPOne assay (EC_{50} = 3-5 nM). The plasma shift with 4.5% HSA on the human GPR40 is fourfold with BI-2081. The cellular potency of BI-0340 (EC_{50} = 1230 nM) on the human GPR40 receptor is more than 200-fold lower compared to the probe BI-2081.

PROBE NAME / NEGATIVE CONTROL	BI-2081	BI-0340
MW [Da]	534.62	568.65
Ki [nM] hGPR40	23	-
IPOne (EC ₅₀) human [nM] ^{a/b}	5/3	1230/-
IPOne (EC ₅₀) rat [nM] ^{a/b}	302/20	3630/-
IPOne (EC ₅₀) mouse [nM] ^b	31	-
IPOne (EC ₅₀) dog [nM] ^b	6	-
IPOne (EC ₅₀) cyno [nM] ^a	76	-

^a Stimulation of 1321N1 cells, which express the GPR40 receptor, followed by measurement of the IP1 accumulation by fluorescence.

In vitro DMPK and CMC parameters

BI-2081 has a good permeability and a high plasma protein binding. It displays a high stability in microsomes in human and rat cells, but seems to have a lower stability in hepatocytes. However, this *in vitro* result does not correlate to the low clearance *in vivo* which was observed in rats.

GPR40 agonist | BI-2081

^b Stimulation of 1321N1 cells, which express the GPR40 receptor, followed by measurement of the IP1 accumulation by fluorescence. Differs mainly from assay **a** by different cell preparation and LiCl containing stimulation buffer. More detailed information can always be obtained via the "Contact us" formular.

PROBE NAME / NEGATIVE CONTROL	BI-2081	BI-0340
logD _{7.4}	3.9	2.6
Solubility @ pH 6.8 [µg/ml]	28	100
CACO permeability @ pH 7.4 [*10 ⁻⁶ cm/s]	65.2	4.1
CACO efflux ratio	1.2	1.6
MDCK permeability P _{app} a-b/b-a @ 1µM [10 ⁻⁶ cm/s]	2.5/17	-
MDCK efflux ratio	6.8	-
Microsomal stability (human/rat) [% Q _H]	<23/<22	61/>88
Hepatocyte stability (human/rat) [% Q _н]	90/67	-
Plasma protein binding (human/rat) [%]	>99.7/>99.8	-
hERG [inh. % @ 10 μM]	22	-
CYP 3A4 (IC ₅₀) [μM]	40	-
CYP 2C8 (IC ₅₀) [μM]	5.4	-
CYP 2C19 (IC ₅₀) [μM]	>50	-
CYP 2D6 (IC ₅₀) [μM]	>50	
MBI 3A4 (25 μM) [%Ctrl]	92	- 9-1

GPR40 agonist | BI-2081

In vivo DMPK parameters

BI-2081 possesses high bioavailability and an overall good PK profiles in rats. The observed *in vivo* clearance is low despite the *in vitro* measured low stability in hepatocytes.

BI-2081	Rat ^a	
Clearance [% Q _H] ^a	6.9	
Mean residence time after i.v. dose [h]	4.1	
Mean residence time after p.o. dose [h]	4.2	
t _{max} [h]	1.17	
C _{max} _dn [nM]	930	
F [%]	79	
V _{ss} [I/kg]	0.9	

^a Rat doses: 1 μmol/kg i.v.; 10 μmol/kg p.o.

In vivo pharmacology

An acute oral glucose test (oGTT) in male Zucker diabetic fatty (ZDF) rats was performed with BI-2081. We observed a strong glucose lowering effect as well as an increase of the plasma insulin level compared to the untreated ZDF rats. The compound reduced the glucose level in this disease-related model by 71% (AUC $_{0-180\,\text{min}}$) with ED $_{50}$ = 0.7 mg/kg and ED $_{100}$ around 10 mg/kg. No significant change of the plasma glucose level was observed in GPR40 KO mice compared to the WT, which shows the on-target-related specificity. Another study on normal fasting rats showed that there was no significant difference in glucose levels between BI-2081 treated rats and the control group, supporting the low risk of hypoglycemia due to the glucose-dependent mode of action on GPR40.

We observed a significant lowering of HbA1c (Δ HbA1c (Δ HbA1c = -1.8%) after treating male ZDF rats with BI-2081 in a subchronic 30 day study (10 mg/kg b.i.d.). We could additionally observe in the same study that BI-2081 lowers plasma lipids such as total cholesterol (39%), triglycerides (25%) and free fatty acids (34%). The body weight of the treated rats was reduced by 14% after 30 days without any effect on food consumption.

GPR40 agonist | BI-2081

<i>IN VIVO</i> STUDY	OBSERVED EFFECT
oGTT in 8-10 old male ZDF rats	- ED_{50} = 0.7 mg/kg - Estimated ED_{100} = ~10 mg/kg - E_{max} = 71% Inhibition (AUC _{0-180 min})
subchronic study male ZDF rats: 10 mg/kg bid, 30 day	- Δ HbA $_{1c}$ = -1.8% - Δ Plasma Cholesterol = -39% - Δ Plasma Triglycerides = -25% - Δ Free Fatty Acids = -34% - Δ Body Weight = -14%

Negative control

The negative control BI-0340 has a similar structure to BI-2081, but it is more than 200-fold less potent on human GPR40 compared to BI-2081 in the IPOne assay.

Figure 4: BI-0340 which serves as a negative control

Selectivity

The selectivity profile for BI-2081 was assessed with the Eurofins Safety Panel 44^M assay. BI-2081 had an affinity towards adrenergic α_{2A} (K_i = 1.3 μ M), histamine H₁ (K_i = 3.1 μ M), CysLT1 (69% inh. @ 10 μ M) and thyroid hormone (rat, K_i = 3.5 μ M).

SELECTIVITY DATA AVAILABLE	BI-2081	BI-0340
SafetyScreen44™ with kind support of &curofins	Yes	Yes
Invitrogen®	No	No
DiscoverX®	No	No
Dundee	No	No

Reference molecule(s)

Fasiglifam hemihydrate (TAK875)

Supplementary data

2-D structure files can be downloaded free of charge from opnMe.

References

- 1. Surgand J., Rodrigo J., Kellenberger E., Rognan D. A Chemogenomic Analysis of the Transmembrane Binding Cavity of Human G-Protein-Coupled Receptors *Proteins* **2006**, 62, 509-538. DOI: 10.1002/prot.20768, PubMed.
- Costanzi S., Neumann S., Gershengorn M. C. Seven Transmembranespanning Receptors for Free Fatty Acids as Therapeutic Targets for Diabetes Mellitus: Pharmacological, Phylogenetic, and Drug Discovery Aspects J. Biol. Chem. 2008, 283(24), 16269-16273.
 DOI: 10.1074/jbc.R800014200, PubMed.
- 3. Khan M. Z., He L. The Role of Polyunsaturated Fatty Acids and GPR40 Receptor in Brain *Neuropharmacology* **2017**, 113, 639-651. DOI: 10.1016/j.neuropharm.2015.05.013, PubMed.
- 4. Poitout V., Lin D. C.-H. Modulating GPR40: therapeutic promise and potential in diabetes *Drug Discov. Today* **2013**, 18(23-24), 1301-1308. DOI: 10.1016/j.drudis.2013.09.003, PubMed.