Molecules on blue background
0 Reviews
Be the first to write a review after you order!
Please leave your review below in English.
Write a review
For writing a review, you need to login first.

SMARCA2/4 PROTAC | ACBI1

Highlights

ACBI1 is a potent and cooperative PROTAC degrader of the BAF complex subunits SMARCA2, SMARCA4 and PRBM1. It harnesses the VHL E3 ligase to recruit its targets via their bromodomains, which results in their selective and pronounced degradation. This compound is suitable for both in vitro and in vivo studies and may be a useful tool to study the effects of an acute inactivation of the BAF complex.

Background information

Would you like to learn more about the role of SMARCA2/4 in a new potential disease indication?  
Watch the recording of a recent online seminar now.

The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription and DNA repair. The SMARCA2 and SMARCA4 genes code for the two alternative catalytic ATP-dependent helicases of the complex. Subunits of the BAF complexes are mutated in approximately 20% of human cancers. Several types of cells have been shown to be vulnerable to the loss of BAF complex ATPase subunits and subunits of the BAF complexes have been found to be mutated in approximately 20% of human cancers. Acute myeloid leukemia cells are sensitive to the loss of SMARCA4, whereas SMARCA4 mutant cancer cells are sensitive to the loss of SMARCA2. Future studies are warranted towards deeper mechanistic understanding of the downstream effects of degrading BAF ATPase subunits in both cancerous and non-cancerous cells. We hope that progress in this direction will be greatly advanced by sharing the chemical tool that has emerged from our work with the wider community.

ACBI1 is a PROTAC* that causes degradation of SMARCA2 and SMARCA4, as well as the facultative BAF complex subunit PBRM1. It is useful to study the consequences of inactivation of the BAF complex in cells in vitro, such as effects on chromatin accessibility, transcription and proliferation1-5 and can be also used for in vivo studies.

The compound is the result of a collaboration between the University of Dundee, School of Life Sciences, and Boehringer Ingelheim.

ACBI1 analog in ternary co-crystal structure of SMARCA2BD:ACBI1analog:VCB (PDB ID 6HAX)

ACBI1 analog in ternary co-crystal structure of SMARCA2BD:ACBI1analog:VCB (PDB ID 6HAX)

*PROTACs (proteolysis-targeting chimeras) offer a novel drug modality wherein bi-functional molecules recruit a target protein and an E3 ligase to induce ubiquitylation and subsequently proteasomal degradation of the target protein.

ACBI1 causes degradation of its targets in tissue culture cells.

Probe name / negative control

ACBI1

cis-ACBI1

MW [Da]

936.1

936.1

Degradation of SMARCA2 in MV-4-11 cells (IC50) [nM]a

6

>1,000

Degradation of SMARCA4 in MV-4-11 cells (IC50) [nM]a

11

>1,000

Degradation of PBRM1 in MV-4-11 cells (IC50) [nM]a

32

>1,000

Proliferation assay in MV-4-11 cells (IC50) [nM]b

29

1400

Proliferation assay in SK-MEL-5 cells (IC50) [nM]b

77

>10,000

a Treatment for 18h followed by analysis by capillary electrophoresis.

b Treatment for 7 days before measuring cell viability via cellular ATP content.

Probe name / negative control

ACBI1

cis-ACBI1

Solubility @ pH 6.8 [µg/ml]

<1

<1

CACO permeability Pa-b @ pH7.4 [*10-6 cm/s]

2.2

n.d.

CACO efflux ratio

1.7

n.d.

Microsomal stability (human/mouse/rat) [% QH]

86 / 46 / <23

>88 / 53 / 34

Hepatocyte stability* (human/mouse/rat) [% QH]

-/62/41

n.d.

Plasma protein binding (FCS 10%) [%]

>99.4

>89.2

CYP 3A4 (IC50) [µM]

0.4

n.d.

CYP 2C8 (IC50) [µM]

<0.2

n.d.

CYP 2C9 (IC50) [µM]

>50

n.d.

CYP 2C19 (IC50) [µM]

1.3

n.d.

CYP 2D6 (IC50) [µM]

>50

n.d.

* in 50% plasma

ACBI1

MOUSE

RAT

Clearance [% QH]a

7.3

93

Mean residence time [h]a

0.8

2.8

tmax [h]b

0.33

1.5

F [%]b

Quantitatively  bioavailable

Quantitatively  bioavailable

Vss [L/kg]a

0.32

12

AUC0-∞ [h nmol L-1]a

14,000

1,500

AUC0-∞ [h nmol L-1]b

18,000

1,200

AUD dose-normalized [h kg L-1]a

2.6

0.29

AUD dose-normalized [h kg L-1]b

3.3

0.23

a 5 mg/kg i.v.; b 5 mg/kg s.c.

PK profiles of ACBI upon 5 mg/kg i.v. (blue  curves) and 5 mg/kg s.c. dosing (green curves) in mouse and rat.

PK profiles of ACBI1 upon 5 mg/kg i.v. (blue curves) and 5 mg/kg s.c. dosing (green curves) in mouse and rat.

In the negative control compound, cis-ACBI1, the hydroxy proline of the VHL binding part is in the inactive cis-conformation, which prevents binding to VHL and thereby protein degradation. This prevents binding to VHL, formation of a triple complex and thereby protein degradation. This compound is useful to differentiate phenotypic effects not caused by protein degradation in comparison with its active trans isomer ACBI1. Furthermore, the difference between binding to the bromodomain of SMARCA2 and SMARCA4 and its degradation can be studied in vitro.

Structure of cis-ACBI1 which serves as a negative control

Structure of cis-ACBI1 which serves as a negative control

The PROTAC ACBI1 causes selective degradation of SMARCA2, SMARCA4 and PBRM1.

ACBI1 causes degradation of SMARCA2, SMARCA4 and PBRM1

Multiplexed isobaric tagging mass spectrometry was utilised to demonstrate whole proteome selectivity of ACBI1 induced degradation.

Data show that amongst 6586 quantified proteins, only SMARCA2, SMARCA4 and PBRM1 are degraded. Of note, the levels of other BAF sub-units including BCL7A and ACTL6A remain unchanged.1

SELECTIVITY DATA AVAILABLE

ACBI1

cis-ACBI1

SafetyScreen44™ with kind support of eurofins logo

Yes

Yes

Invitrogen®

No

No

DiscoverX®

No

No

Dundee

No

No

The PROTAC ACBI1 was tested by the Eric Fisher Laboratory - Dana-Farber Cancer Institute as part of their Degradation Proteomics Initiative.6,7 It induces selective degradation of SMARCA2 and SMARCA4 after 5 h of treatment at 1 µM in the neuroblastoma cell line Kelly Cells.

ACBI1 vs. DSMO

Global protein quantification was used to explore the unbiased proteome-wide selectivity of ACBI1 induced degradation. Whole cell protein quantification was performed using label free quantification with the Fischer lab’s diaPASEF workflow.

Of the 7,742 proteins quantified in this experiment, only SMARCA2 and SMARCA4 were found to be significantly downregulated in response to ACBI1 treatment. Statistical analysis was performed using a moderated t-test in Bioconductor’s limma package to generate hit lists containing log2 Fold Change and P-values for each protein. The data are also displayed in the scatterplot above.

Download selectivity data: 
ACBI1_selectivityData.xlsx 
ACBI1_neg_ctrl_selectivityData.xlsx 
Degradation_Proteomics_Initiative_data_ACBI1-SMARCA-2-4-PROTAC_2.xlsx

ACBI1 causes pronounced degradation of the BAF chromatin remodeling complex ATPase proteins SMARCA2 and SMARCA4.

BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design

Farnaby W.; Koegl M.; Roy M. J.; Whitworth C.; Diers E.; Trainor N.; Zollman D.; Steurer S.; Karolyi-Oezguer J.; Riedmueller C.; Gmaschitz T.; Wachter J.; Dank C.; Galant M.; Sharps B.; Rumpel K.; Traxler E.; Gerstberger T.; Schnitzer R.; Petermann O.; Greb P.; Weinstabl H.; Bader G.; Zoephel A.; Weiss-Puxbaum A.; Ehrenhöfer-Wölfer K.; Wöhrle S.; Boehmelt G.; Rinnenthal J.; Arnhof H.; Wiechens N.; Wu MY.; Owen-Hughes T.; Ettmayer P.; Pearson M.; McConnell D.B. and Ciulli A.

Nat Chem Biol. 2019, 15(7):672-680.

Protac-Induced Protein Degradation in Drug Discovery: Breaking the Rules or Just Making New Ones?

Churcher I.

J. Med. Chem. 2018, 61(2):444-452.

Targeting epigenetic modulators using PROTAC degraders: Current status and future perspective

Webb T., Craigon C., Ciulli A.

Bioorg Med Chem Lett 2022, 63:128653.

The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies

Vangamudi B.; Paul T. A.; Shah P. K.; Kost-Alimova M.; Nottebaum L.; Shi X.; Zhan Y.; Leo E.; Mahadeshwar H. S.; Protopopov A.; Futreal A.; Tieu T. N.; Peoples M.; Heffernan T. P.; Marszalek J. R.; Toniatti C.; Petrocchi A.; Verhelle D.; Owen D. R.; Draetta G.; Jones P.; Palmer W. S.; Sharma S. and Andersen J. N.

Cancer Res. 2015, 75(18):3865-3878.

Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydr

Soares P.; Gadd M. S.; Frost J.; Galdeano C.; Ellis L.; Epemolu O.; Rocha S.; Read K. D.; Ciulli A.

J. Med. Chem. 2018, 61(2):599-618.

Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development

Donovan K. A., Ferguson F. M., Bushman J. W., Eleuteri N. A., Bhunia D., Ryu S., Tan L., Shi K., Yue H., Liu X., Dobrovolsky D., Jiang B., Wang J., Hao M., You I., Teng M., Liang Y., Hatcher J., Li Z., Manz T. D., Groendyke B., Hu W., Nam Y., Sengupta S., Cho H., Shin I., Agius M. P., Ghobrial I. M., Ma M. W., Che J., Buhrlage S. J., Sim T., Gray N. S., Fischer E. S.

Cell. 2020, 183(6):1714-1731.

When you plan a publication, please use the following acknowledgement: 
ACBI1 was kindly provided by Boehringer Ingelheim via its open innovation platform opnMe, available at https://opnme.com.

Reference RIS format

Reference txt format

Degraders early developability assessment: face-to-face with molecular properties

Ermondi G., Vallaro M., Caron G.

Drug Discovery Today 2020, 25 (9):1585-1591.

Acute BAF perturbation causes immediate changes in chromatin accessibility

Schick S., Grosche S., Kohl K. E., Drpic D., Jaeger M. G., Marella N. C., Imrichova H., Lin J-M. G., Hofstätter G., Schuster M., Rendeiro A. F., Koren A., Petronczki M., Bock C., Müller A. C., Winter G. E., Kubicek S.

Nat Genet 2021, 53(3):269-278.

BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma

Laubscher D., Gryder B. E., Sunkel B. D., Andresson T., Wachtel M., Das S., Roschitzki B., Wolski W., Wu X. S., Chou H-C., Song Y. K., Wang C., Wei J. S., Wang M., Wen X., Ngo Q. A., Marques J. G., Vakoc C. R., Schäfer B. W., Stanton B. Z., Khan J.

Nat Commun 2021, 12(1):6924. open access

SMARCA4 biology in alveolar rhabdomyosarcoma

Bharathy N., Cleary M. M., Kim J-A., Nagamori K., Crawford K. A., Wang E., Saha D., Settelmeyer T. P., Purohit R., Skopelitis D., Chang K., Doran J. A., Kirschbaum C. W., Bharathy S., Crews D. W., Randolph M. E., Karnezis A. N., Hudson-Price L., Dhawan J., Michalek J. E., Ciulli A., Vakoc C. R., Keller C.

Oncogene 2022, 41(11):1647-1656.

Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders

Hanzl A., Casement R., Imrichova H., Hughes S. J., Barone E., Testa A., Bauer S., Wright J., Brand M., Ciulli A., Winter G. E.

Nat Chem Biol 2022, 61(2):599-618.

Canonical BAF complex activity shapes the enhancer landscape that licenses CD8+ T cell effector and memory fates

McDonald B., Chick B. Y., Ahmed N. S., Burns M., Ma S., Casillas E., Chen D., Mann T. H., O'Connor C., Hah N., Hargreaves D. C., Kaech S. M.

Immunity 2023, 56(6):1303-1319.e5.

Are we ready to design oral PROTACs®?

Jimenez D. G., Sebastiano M. R., Caron G., Ermondi G.

ADMET DMPK 2021, 9(4):243-254.